线性代数考研(线性代数考研哪个老师好)




线性代数考研,线性代数考研哪个老师好

今天,笔者给大家讲讲逆矩阵的意义,这个话题篇幅较长,需要分成好几次来聊,话不多说,让我们开门见山

什么是逆矩阵呢?它的精髓包含在一个公式里,今天我主要带大家理解下面这个公式。大家先瞅瞅它,(看不懂完全没关系。先简单留个印象就行了)。等你看懂了它,你就明白了逆矩阵的意义

式中A是矩阵,A的负1次方表示逆矩阵

好了,让我们开始今天的线代之旅,有请我们的明星矩阵:

我们上次的文章中给大家讲了矩阵乘法的意义。(强烈建议大家先看笔者的前一篇文章,介绍矩阵相乘的本质)这种二维矩阵在空间中可看成是一个以i’(1,3)j’(2,4)为基底的倾斜坐标系:

大家仔细观察这个图

这个斜坐标的基底不是i和j,它是两个维度复合而成的:

和直角坐标系对应的矩阵是什么呢:

于是,逆矩阵说话了:我逆矩阵可以把这个斜的坐标系变回我们常见的直坐标系:

看到这里,你大概就明白了,逆矩阵为什么叫逆矩阵?因为大部分矩阵可以把直角坐标系变成各种斜的坐标系,而逆矩阵却可以把斜的坐标系变回直角坐标系。

矩阵该矩阵的逆矩阵复合在一起同时操作我们直角坐标系,最终等于没有作用(两个作用相互抵消了):

这个大写I的意思是单位矩阵,这个单位矩阵其实就表示我们的直角坐标系那两个基向量i,j。

现在问题来了:

如何求这四个问号呢?我们直接设a,b,c,d四个未知数不就完了嘛:

挨个对应解得:

这个逆矩阵A^-1张什么样子呢:

类比空间,你是不是很快就想到了:逆矩阵作用就是把斜的三维xyz坐标系变回我们常见的直角三维坐标系。

不过,求三阶矩阵的逆矩阵用方程去解就非常复杂了,不信你可以试试看。应于这个问题,我将给大家介绍更多好玩的数学工具,这个安排到下一篇讲。

最后给大家留个问题:你能求下面这个矩阵的逆矩阵吗?

(未完待续)

线性代数考研(线性代数考研哪个老师好)

未经允许不得转载:上海考研论坛 » 线性代数考研(线性代数考研哪个老师好)

赞 (0) 打赏

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏